Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido{ μ_3 -6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}octamethyldi- μ_3 -oxidotetratin(IV)

See Mun Lee, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 6 August 2009; accepted 14 August 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.027; wR factor = 0.072; data-to-parameter ratio = 21.5.

In the title tetranuclear tin(IV) complex, $[Sn_4(CH_3)_8 (C_{20}H_{22}N_2O_4)Cl_2O_2]$, there are three completely different tin-atom coordinations. One metal atom (site symmetry 2) adopts a distorted pentagonal-bipyramidal SnC₂N₂O₃ coordination arising from the N, N', O, O'-tetradentate deprotonated Schiff base, two methyl groups in the axial sites and a μ_3 -O atom that also bonds to two further Sn atoms. Two symmetryequivalent Sn atoms adopt very distorted SnC₂O₄ arrangements that could be described as pentagonal-bipyramidal with one equatorial vertex missing and the C atoms in the axial site. The final Sn atom (site symmetry 2) adopts an SnC₂Cl₂O trigonal-bipyramidal arrangement, with Cl atoms in the axial sites. As well as the two Sn atoms, one O atom lies on a twofold rotation rotation axis, and another is disordered about the axis. The terminal ethoxy group is disordered over two sets of sites with equal occupancy.

Related literature

For other organotin derivatives of 6,6'-dialkoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenol, see: Cunningham *et al.* (2004). For the crystal structure of 6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenol, see: Bermejo *et al.* (2007).

Z = 4

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.15~\mathrm{mm}$

68779 measured reflections

4259 independent reflections

4089 reflections with $I > 2\sigma(I)$

 $\mu = 2.85 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.029$

Experimental

Crystal data

$$\begin{split} & [\mathrm{Sn}_4(\mathrm{CH}_3)_8(\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_2\mathrm{O}_4)\mathrm{Cl}_2\mathrm{O}_2] \\ & M_r = 1052.33 \\ & \mathrm{Tetragonal}, \ P4_32_12 \\ & a = 9.8723 \ (1) \ \mathrm{\AA} \\ & c = 38.0217 \ (5) \ \mathrm{\AA} \\ & V = 3705.68 \ (6) \ \mathrm{\AA}^3 \end{split}$$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.863, T_{max} = 1.000$ (expected range = 0.563–0.652)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.072$	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.07	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
4259 reflections	Absolute structure: Flack (1983),
198 parameters	1694 Friedel pairs
10 restraints	Flack parameter: 0.00 (4)

Table 1

Selected geometric parameters (Å, °).

Sn1-O3	2.072 (4)	Sn2-C2	2.091 (5)
Sn1-C1	2.112 (5)	Sn2-C3	2.100 (5)
Sn1-O1	2.410 (3)	Sn2-O4	2.125 (17)
Sn1-N1	2.426 (4)	Sn3-O4	1.964 (5)
Sn2-O1	2.463 (3)	Sn3-C4	2.114 (5)
Sn2-O2	2.791 (4)	Sn3-Cl1	2.5829 (15)
Sn2-O3	2.006 (2)		
C1 ⁱ -Sn1-C1	173.9 (3)	C4-Sn3-C4 ⁱ	132.6 (3)
C2-Sn2-C3	147.8 (2)		

Symmetry code: (i) y, x, -z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X*-

metal-organic compounds

SEED (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5035).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. J. (2007). *Eur. J. Inorg. Chem.* pp. 3789–3797.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). *Organometallics*, **23**, 984–994.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m1103-m1104 [doi:10.1107/S1600536809032255]

$\label{eq:linear} Dichlorido \{ \mu_3-6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)] diphenolato \} octamethyldi-\mu_3-oxido-tetratin(IV)$

S. M. Lee, K. M. Lo and S. W. Ng

Experimental

One mmol (0.36 g) of the Schiff base was synthesized in toluene according to a literature procedure (Bermejo *et al.*, 2007) from 3-ethoxysalicylaldehyde and ethylenediamine. To the solution was added an excess of triethylamine (0.5 ml). A toluene solution of dimethyltin dichloride (0.20 g, 1 mmol) was added and the mixture heated. Yellow blocks of (I) were isolated from the cool filtered solution.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times $U_{eq}(C)$.

The ethoxy group in disordered over two positions in respect of the carbon atoms. The occupancy could not be refined, and was arbitrarily regarded as 0.5 each. The C–O distances were restrained to 1.45 ± 0.01 Å and the C–C distances to 1.50 ± 0.01 Å. The displacement factors of the primed atoms were set of those of the umprimed ones, and the anisotropic temperature factors were restrained to be nearly isotropic by tight restraints.

Figures

Fig. 1. View of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the ethyl groups are not shown. Unlabelled atoms are generated by the symmetry operation (y, x, -z).

$Dichlorido \{\mu_3-6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)] diphenolato \} octamethyldi-\mu_3-oxidotetratin(IV)$

Crystal data [Sn₄(CH₃)₈(C₂₀H₂₂N₂O₄)Cl₂O₂] $M_r = 1052.33$ Tetragonal, P4₃2₁2 Hall symbol: P4 nw 2abw a = 9.8723 (1) Å b = 9.8723 Å c = 38.0217 (5) Å

Z = 4 $F_{000} = 2040$ $D_x = 1.886 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9779 reflections $\theta = 2.1-26.5^{\circ}$ $\mu = 2.85 \text{ mm}^{-1}$

$\alpha = 90^{\circ}$	T = 100 K
$\beta = 90^{\circ}$	Block, yellow
$\gamma = 90^{\circ}$	$0.20\times0.18\times0.15~mm$
V = 3705.68 (6) Å ³	

Data collection

Bruker SMART APEX diffractometer	4259 independent reflections
Radiation source: fine-focus sealed tube	4089 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 100 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.863, T_{\max} = 1.000$	$k = -12 \rightarrow 12$
68779 measured reflections	$l = -49 \rightarrow 48$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.027$	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 5.6973P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.072$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
4259 reflections	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$
198 parameters	Extinction correction: none
10 restraints	Absolute structure: Flack (1983), 1694 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.00 (4)
Secondary atom site location: difference Fourier map	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	Uiso*/Ueq	Occ. (<1)
Sn1	0.17065 (3)	0.17065 (3)	0.0000	0.05087 (13)	
Sn2	0.33507 (3)	0.46713 (3)	0.035901 (8)	0.04062 (9)	
Sn3	0.64067 (3)	0.64067 (3)	0.0000	0.03517 (10)	
Cl1	0.51581 (18)	0.74108 (17)	0.05370 (4)	0.0693 (4)	
01	0.1449 (3)	0.3159 (3)	0.05051 (8)	0.0476 (8)	
02	0.1753 (4)	0.5180 (4)	0.09499 (11)	0.0663 (11)	
03	0.3190 (3)	0.3190 (3)	0.0000	0.0383 (9)	
04	0.5075 (16)	0.4933 (15)	0.0032 (5)	0.027 (2)	0.50
N1	-0.0212 (4)	0.0806 (4)	0.03231 (12)	0.0486 (10)	
C1	0.2924 (5)	0.0328 (5)	0.02834 (14)	0.0505 (12)	
H1A	0.3582	-0.0091	0.0124	0.076*	

H1B	0.2350	-0.0376	0.0387	0.076*	
H1C	0.3406	0.0811	0.0471	0.076*	
C2	0.4546 (6)	0.3956 (6)	0.07732 (13)	0.0564 (13)	
H2A	0.5248	0.3352	0.0680	0.085*	
H2B	0.3977	0.3457	0.0940	0.085*	
H2C	0.4974	0.4723	0.0893	0.085*	
C3	0.2074 (5)	0.6200 (5)	0.01652 (15)	0.0509 (12)	
H3A	0.2616	0.7000	0.0105	0.076*	
H3B	0.1406	0.6441	0.0345	0.076*	
H3C	0.1606	0.5873	-0.0045	0.076*	
C4	0.8115 (6)	0.5917 (6)	0.03104 (17)	0.0613 (15)	
H4A	0.8022	0.4991	0.0400	0.092*	
H4B	0.8177	0.6549	0.0508	0.092*	
H4C	0.8936	0.5983	0.0167	0.092*	
C5	-0.0612 (6)	-0.0545 (6)	0.01965 (15)	0.0645 (16)	
H5A	-0.1547	-0.0747	0.0275	0.077*	
H5B	-0.0002	-0.1237	0.0299	0.077*	
C6	-0.0948 (5)	0.1346 (5)	0.05572 (13)	0.0465 (11)	
H6	-0.1747	0.0862	0.0617	0.056*	
C7	-0.0736 (5)	0.2594 (5)	0.07448 (12)	0.0418 (10)	
C8	-0.1778 (5)	0.2942 (6)	0.09830 (14)	0.0509 (12)	
H8	-0.2577	0.2406	0.0992	0.061*	
C9	-0.1654 (6)	0.4048 (6)	0.12023 (14)	0.0575 (14)	
H9	-0.2372	0.4286	0.1357	0.069*	
C10	-0.0475 (6)	0.4810 (6)	0.11964 (12)	0.0551 (14)	
H10	-0.0369	0.5548	0.1354	0.066*	
C11	0.0529 (5)	0.4504 (5)	0.09661 (12)	0.0452 (11)	
C12	0.0447 (5)	0.3385 (5)	0.07272 (11)	0.0399 (9)	
C13	0.2125 (16)	0.6125 (10)	0.1229 (3)	0.061 (2)*	0.50
H13A	0.3109	0.6070	0.1276	0.073*	0.50
H13B	0.1633	0.5900	0.1448	0.073*	0.50
C14	0.1759 (17)	0.7520 (13)	0.1109 (4)	0.080 (3)*	0.50
H14A	0.0782	0.7565	0.1065	0.120*	0.50
H14B	0.2252	0.7734	0.0893	0.120*	0.50
H14C	0.2001	0.8174	0.1293	0.120*	0.50
C13'	0.1933 (14)	0.6412 (9)	0.1157 (3)	0.061 (2)*	0.50
H13C	0.2913	0.6628	0.1162	0.073*	0.50
H13D	0.1656	0.6214	0.1402	0.073*	0.50
C14'	0.1189 (16)	0.7656 (14)	0.1039 (5)	0.080 (3)*	0.50
H14D	0.1808	0.8246	0.0908	0.120*	0.50
H14E	0.0841	0.8141	0.1245	0.120*	0.50
H14F	0.0432	0.7393	0.0887	0.120*	0.50
	2				

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03415 (14)	0.03415 (14)	0.0843 (3)	-0.00937 (17)	-0.01282 (18)	0.01282 (18)
Sn2	0.04630 (18)	0.03956 (16)	0.03599 (14)	0.01171 (13)	0.00052 (13)	-0.00805 (12)

Sn3	0.03041 (12)	0.03041 (12)	0.0447 (2)	-0.00586 (15)	-0.00722 (12)	0.00722 (12)
Cl1	0.0783 (10)	0.0730 (10)	0.0567 (8)	0.0163 (8)	-0.0115 (7)	-0.0226 (7)
O1	0.0442 (18)	0.0470 (19)	0.0516 (18)	-0.0007 (16)	0.0139 (15)	-0.0160 (15)
O2	0.066 (3)	0.068 (3)	0.065 (2)	-0.014 (2)	0.014 (2)	-0.035 (2)
O3	0.0332 (13)	0.0332 (13)	0.049 (2)	-0.0092 (17)	0.0115 (14)	-0.0115 (14)
O4	0.031 (4)	0.022 (3)	0.029 (5)	-0.004 (3)	-0.006 (3)	0.005 (3)
N1	0.048 (2)	0.039 (2)	0.059 (2)	-0.0105 (17)	0.012 (2)	-0.0063 (19)
C1	0.052 (3)	0.039 (2)	0.061 (3)	0.004 (2)	-0.007 (2)	0.008 (2)
C2	0.058 (3)	0.067 (3)	0.044 (2)	0.004 (3)	-0.007 (2)	0.013 (2)
C3	0.042 (3)	0.041 (3)	0.070 (3)	0.009 (2)	-0.003 (2)	-0.001 (2)
C4	0.044 (3)	0.061 (3)	0.079 (4)	-0.004 (2)	-0.027 (3)	0.011 (3)
C5	0.054 (3)	0.050 (3)	0.090 (4)	-0.023 (2)	0.024 (3)	-0.014 (3)
C6	0.040 (2)	0.049 (3)	0.051 (3)	-0.004 (2)	0.008 (2)	0.006 (2)
C7	0.046 (3)	0.044 (3)	0.035 (2)	0.0085 (19)	0.0034 (19)	0.0063 (19)
C8	0.044 (3)	0.058 (3)	0.051 (3)	0.007 (2)	0.008 (2)	0.008 (2)
C9	0.060 (3)	0.070 (4)	0.043 (3)	0.017 (3)	0.015 (3)	0.003 (2)
C10	0.070 (4)	0.059 (3)	0.036 (2)	0.018 (3)	0.006 (2)	-0.007 (2)
C11	0.051 (3)	0.049 (3)	0.035 (2)	0.009 (2)	0.006 (2)	-0.004 (2)
C12	0.041 (2)	0.048 (3)	0.0302 (19)	0.009 (2)	0.0041 (17)	0.0026 (19)

Geometric parameters (Å, °)

2.072 (4)	C2—H2B	0.9800
2.112 (5)	C2—H2C	0.9800
2.112 (5)	С3—НЗА	0.9800
2.410 (3)	С3—Н3В	0.9800
2.410 (3)	С3—НЗС	0.9800
2.426 (4)	C4—H4A	0.9800
2.426 (4)	C4—H4B	0.9800
3.310 (2)	C4—H4C	0.9800
2.463 (3)	C5—C5 ⁱ	1.497 (12)
2.791 (4)	С5—Н5А	0.9900
2.006 (2)	С5—Н5В	0.9900
2.091 (5)	C6—C7	1.439 (7)
2.100 (5)	С6—Н6	0.9500
2.125 (17)	C7—C12	1.406 (7)
2.192 (16)	С7—С8	1.414 (7)
3.2943 (6)	C8—C9	1.379 (8)
1.964 (5)	С8—Н8	0.9500
1.964 (5)	C9—C10	1.386 (9)
2.114 (5)	С9—Н9	0.9500
2.114 (5)	C10—C11	1.356 (7)
2.5829 (15)	C10—H10	0.9500
2.5829 (15)	C11—C12	1.432 (7)
1.320 (5)	C13—C14	1.493 (9)
1.381 (7)	C13—H13A	0.9900
1.459 (8)	C13—H13B	0.9900
	2.072 (4) 2.112 (5) 2.112 (5) 2.410 (3) 2.410 (3) 2.426 (4) 2.426 (4) 3.310 (2) 2.463 (3) 2.791 (4) 2.006 (2) 2.091 (5) 2.100 (5) 2.125 (17) 2.192 (16) 3.2943 (6) 1.964 (5) 1.964 (5) 2.114 (5) 2.5829 (15) 1.320 (5) 1.381 (7) 1.459 (8)	$2.072 (4)$ $C2-H2B$ $2.112 (5)$ $C3-H3A$ $2.410 (3)$ $C3-H3B$ $2.410 (3)$ $C3-H3C$ $2.426 (4)$ $C4-H4A$ $2.426 (4)$ $C4-H4B$ $3.310 (2)$ $C4-H4C$ $2.463 (3)$ $C5-C5^i$ $2.791 (4)$ $C5-H5A$ $2.006 (2)$ $C5-H5B$ $2.091 (5)$ $C6-C7$ $2.100 (5)$ $C6-H6$ $2.125 (17)$ $C7-C12$ $2.192 (16)$ $C8-C9$ $1.964 (5)$ $C9-C10$ $2.114 (5)$ $C9-H9$ $2.114 (5)$ $C10-C11$ $2.5829 (15)$ $C13-C14$ $1.381 (7)$ $C13-H13A$ $1.459 (8)$ $C13-H13B$

O2—C13'	1.460 (8)	C14—H14A	0.9800
O3—Sn2 ⁱ	2.006 (2)	C14—H14B	0.9800
04—04 ⁱ	0.31 (4)	C14—H14C	0.9800
O4—Sn2 ⁱ	2.192 (16)	C13'—C14'	1.499 (9)
N1—C6	1.267 (6)	C13'—H13C	0.9900
N1—C5	1.472 (6)	C13'—H13D	0.9900
C1—H1A	0.9800	C14'—H14D	0.9800
C1—H1B	0.9800	C14'—H14E	0.9800
C1—H1C	0.9800	C14'—H14F	0.9800
C2—H2A	0.9800		
$O3$ — $Sn1$ — $C1^i$	93.05 (15)	C6—N1—Sn1	130.5 (3)
O3—Sn1—C1	93.04 (15)	C5—N1—Sn1	112.1 (3)
C1 ⁱ —Sn1—C1	173.9 (3)	Sn1—C1—H1A	109.5
O3—Sn1—O1	69.76 (8)	Sn1—C1—H1B	109.5
C1 ⁱ —Sn1—O1	89.99 (17)	H1A—C1—H1B	109.5
C1—Sn1—O1	92.12 (17)	Sn1—C1—H1C	109.5
O3—Sn1—O1 ⁱ	69.76 (8)	H1A—C1—H1C	109.5
C1 ⁱ —Sn1—O1 ⁱ	92.12 (17)	H1B—C1—H1C	109.5
C1—Sn1—O1 ⁱ	89.99 (17)	Sn2—C2—H2A	109.5
O1—Sn1—O1 ⁱ	139.52 (16)	Sn2—C2—H2B	109.5
O3—Sn1—N1 ⁱ	144.20 (10)	H2A—C2—H2B	109.5
C1 ⁱ —Sn1—N1 ⁱ	87.14 (19)	Sn2—C2—H2C	109.5
C1—Sn1—N1 ⁱ	87.92 (18)	H2A—C2—H2C	109.5
O1—Sn1—N1 ⁱ	146.01 (13)	H2B—C2—H2C	109.5
O1 ⁱ —Sn1—N1 ⁱ	74.46 (13)	Sn2—C3—H3A	109.5
O3—Sn1—N1	144.20 (10)	Sn2—C3—H3B	109.5
C1 ⁱ —Sn1—N1	87.92 (18)	НЗА—СЗ—НЗВ	109.5
C1—Sn1—N1	87.14 (19)	Sn2—C3—H3C	109.5
O1—Sn1—N1	74.46 (13)	НЗА—СЗ—НЗС	109.5
Ol ⁱ —Sn1—N1	146.01 (13)	НЗВ—СЗ—НЗС	109.5
N1 ⁱ —Sn1—N1	71.6 (2)	Sn3—C4—H4A	109.5
O3—Sn2—C2	108.10 (17)	Sn3—C4—H4B	109.5
O3—Sn2—C3	103.75 (16)	H4A—C4—H4B	109.5
C2—Sn2—C3	147.8 (2)	Sn3—C4—H4C	109.5
O3—Sn2—O4	75.7 (4)	H4A—C4—H4C	109.5
C2—Sn2—O4	91.7 (5)	H4B—C4—H4C	109.5
C3—Sn2—O4	100.8 (5)	$N1 - C5 - C5^i$	110.7 (4)
O3—Sn2—O4 ⁱ	74.2 (4)	N1—C5—H5A	109.5
C2—Sn2—O4 ⁱ	99.8 (5)	C5 ⁱ —C5—H5A	109.5
$C3$ — $Sn2$ — $O4^{i}$	93.4 (5)	N1—C5—H5B	109.5
O4—Sn2—O4 ⁱ	8.1 (10)	C5 ⁱ —C5—H5B	109.5
O3—Sn2—O1	69.60 (11)	H5A—C5—H5B	108.1
C2—Sn2—O1	93.19 (18)	N1—C6—C7	128.7 (5)
C3—Sn2—O1	93.30 (17)	NI-Co-Ho	115.7

O4—Sn2—O1	144.8 (4)	С7—С6—Н6	115.7
O4 ⁱ —Sn2—O1	143.8 (4)	C12—C7—C8	120.0 (5)
O3—Sn2—Sn2 ⁱ	34.82 (9)	C12—C7—C6	125.0 (4)
$C2$ — $Sn2$ — $Sn2^i$	105.49 (17)	C8—C7—C6	114.8 (5)
$C3$ — $Sn2$ — $Sn2^i$	103.37 (16)	C9—C8—C7	121.0 (5)
O4—Sn2—Sn2 ⁱ	41.0 (4)	С9—С8—Н8	119.5
$O4^{i}$ —Sn2—Sn2 ⁱ	39.5 (4)	С7—С8—Н8	119.5
O1—Sn2—Sn2 ⁱ	104.40 (7)	C8—C9—C10	119.6 (5)
O4—Sn3—O4 ⁱ	9.1 (10)	С8—С9—Н9	120.2
O4—Sn3—C4	109.3 (6)	С10—С9—Н9	120.2
O4 ⁱ —Sn3—C4	118.2 (6)	C11—C10—C9	120.2 (5)
O4—Sn3—C4 ⁱ	118.2 (6)	C11—C10—H10	119.9
O4 ⁱ —Sn3—C4 ⁱ	109.3 (6)	С9—С10—Н10	119.9
C4—Sn3—C4 ⁱ	132.6 (3)	C10—C11—O2	124.1 (5)
O4—Sn3—Cl1	85.2 (6)	C10-C11-C12	122.6 (5)
O4 ⁱ —Sn3—Cl1	87.2 (6)	O2—C11—C12	113.2 (4)
C4—Sn3—Cl1	91.55 (19)	O1—C12—C7	124.0 (4)
C4 ⁱ —Sn3—Cl1	91.49 (19)	O1—C12—C11	119.6 (4)
O4—Sn3—Cl1 ⁱ	87.2 (6)	C7—C12—C11	116.4 (4)
O4 ⁱ —Sn3—Cl1 ⁱ	85.2 (6)	O2—C13—C14	108.0 (10)
C4—Sn3—Cl1 ⁱ	91.49 (19)	O2—C13—H13A	110.1
C4 ⁱ —Sn3—Cl1 ⁱ	91.55 (19)	C14—C13—H13A	110.1
Cl1—Sn3—Cl1 ⁱ	172.42 (8)	O2—C13—H13B	110.1
C12—O1—Sn1	133.6 (3)	C14—C13—H13B	110.1
C12—O1—Sn2	127.8 (3)	H13A—C13—H13B	108.4
Sn1—O1—Sn2	95.76 (11)	O2—C13'—C14'	117.5 (10)
C11—O2—C13	119.8 (7)	O2—C13'—H13C	107.9
C11—O2—C13'	119.0 (7)	C14'—C13'—H13C	107.9
$Sn2-O3-Sn2^{i}$	110.36 (18)	O2—C13'—H13D	107.9
Sn2—O3—Sn1	124.82 (9)	C14'—C13'—H13D	107.9
Sn2 ⁱ —O3—Sn1	124.82 (9)	H13C—C13'—H13D	107.2
O4 ⁱ —O4—Sn3	85.4 (5)	C13'—C14'—H14D	109.5
O4 ⁱ —O4—Sn2	98 (6)	C13'—C14'—H14E	109.5
Sn3—O4—Sn2	131.5 (10)	H14D—C14'—H14E	109.5
O4 ⁱ —O4—Sn2 ⁱ	73 (6)	C13'—C14'—H14F	109.5
Sn3—O4—Sn2 ⁱ	127.4 (9)	H14D—C14'—H14F	109.5
Sn2—O4—Sn2 ⁱ	99.5 (2)	H14E—C14'—H14F	109.5
C6—N1—C5	117.2 (4)		
O3—Sn1—O1—C12	162.8 (4)	O3—Sn2—O4—O4 ⁱ	78 (5)
C1 ⁱ —Sn1—O1—C12	69.6 (4)	C2—Sn2—O4—O4 ⁱ	-174 (6)
C1—Sn1—O1—C12	-104.7 (4)	C3—Sn2—O4—O4 ⁱ	-23 (6)
O1 ⁱ —Sn1—O1—C12	162.8 (4)	O1—Sn2—O4—O4 ⁱ	88 (6)

N1 ⁱ —Sn1—O1—C12	-15.3 (6)	$Sn2^{i}$ — $Sn2$ — $O4$ — $O4^{i}$	75 (5)
N1—Sn1—O1—C12	-18.3 (4)	O3—Sn2—O4—Sn3	169.5 (13)
O3—Sn1—O1—Sn2	1.46 (6)	C2—Sn2—O4—Sn3	-82.3 (12)
C1 ⁱ —Sn1—O1—Sn2	-91.79 (18)	C3—Sn2—O4—Sn3	67.9 (12)
C1—Sn1—O1—Sn2	93.93 (18)	O4 ⁱ —Sn2—O4—Sn3	91 (6)
O1 ⁱ —Sn1—O1—Sn2	1.46 (6)	O1—Sn2—O4—Sn3	179.8 (5)
N1 ⁱ —Sn1—O1—Sn2	-176.7 (2)	Sn2 ⁱ —Sn2—O4—Sn3	165.9 (17)
N1—Sn1—O1—Sn2	-179.63 (16)	$O3$ — $Sn2$ — $O4$ — $Sn2^i$	3.6 (5)
O3—Sn2—O1—C12	-164.5 (4)	$C2$ — $Sn2$ — $O4$ — $Sn2^i$	111.9 (6)
C2—Sn2—O1—C12	87.4 (4)	$C3$ — $Sn2$ — $O4$ — $Sn2^{i}$	-98.0 (6)
C3—Sn2—O1—C12	-61.0 (4)	O4 ⁱ —Sn2—O4—Sn2 ⁱ	-75 (5)
O4—Sn2—O1—C12	-175.1 (9)	$O1$ — $Sn2$ — $O4$ — $Sn2^i$	13.9 (13)
O4 ⁱ —Sn2—O1—C12	-161.3 (9)	O3—Sn1—N1—C6	19.7 (6)
Sn2 ⁱ —Sn2—O1—C12	-165.7 (3)	C1 ⁱ —Sn1—N1—C6	-72.6 (5)
O3—Sn2—O1—Sn1	-1.51 (7)	C1—Sn1—N1—C6	110.9 (5)
C2—Sn2—O1—Sn1	-109.65 (19)	O1—Sn1—N1—C6	17.9 (5)
C3—Sn2—O1—Sn1	101.95 (18)	O1 ⁱ —Sn1—N1—C6	-163.3 (4)
O4—Sn2—O1—Sn1	-12.1 (9)	N1 ⁱ —Sn1—N1—C6	-160.3 (6)
O4 ⁱ —Sn2—O1—Sn1	1.7 (9)	O3—Sn1—N1—C5	-165.8 (3)
Sn2 ⁱ —Sn2—O1—Sn1	-2.76 (12)	C1 ⁱ —Sn1—N1—C5	101.8 (4)
$C2$ — $Sn2$ — $O3$ — $Sn2^i$	-91.27 (17)	C1—Sn1—N1—C5	-74.6 (4)
C3—Sn2—O3—Sn 2^{i}	93.72 (16)	O1—Sn1—N1—C5	-167.6 (4)
O4—Sn2—O3—Sn2 ⁱ	-4.2 (5)	O1 ⁱ —Sn1—N1—C5	11.1 (5)
$O4^{i}$ —Sn2—O3—Sn2 ⁱ	4.1 (5)	N1 ⁱ —Sn1—N1—C5	14.2 (3)
O1—Sn2—O3—Sn2 ⁱ	-177.87 (9)	C6—N1—C5—C5 ⁱ	134.5 (6)
C2—Sn2—O3—Sn1	88.73 (17)	Sn1—N1—C5—C5 ⁱ	-40.7 (7)
C3—Sn2—O3—Sn1	-86.28 (16)	C5—N1—C6—C7	174.7 (5)
O4—Sn2—O3—Sn1	175.8 (5)	Sn1—N1—C6—C7	-11.1 (8)
O4 ⁱ —Sn2—O3—Sn1	-175.9 (5)	N1—C6—C7—C12	-7.7 (8)
O1—Sn2—O3—Sn1	2.13 (9)	N1—C6—C7—C8	177.8 (5)
Sn2 ⁱ —Sn2—O3—Sn1	180.0	C12—C7—C8—C9	-0.4 (7)
C1 ⁱ —Sn1—O3—Sn2	86.70 (15)	C6—C7—C8—C9	174.3 (5)
C1—Sn1—O3—Sn2	-93.30 (15)	C7—C8—C9—C10	-1.8 (8)
O1—Sn1—O3—Sn2	-2.17 (9)	C8—C9—C10—C11	2.7 (8)
$O1^{i}$ —Sn1—O3—Sn2	177.83 (9)	C9—C10—C11—O2	-177.8 (5)
N1 ⁱ —Sn1—O3—Sn2	176.03 (19)	C9—C10—C11—C12	-1.5 (8)
N1—Sn1—O3—Sn2	-3.97 (19)	C13—O2—C11—C10	11.1 (9)
$C1^{i}$ — $Sn1$ — $O3$ — $Sn2^{i}$	-93.30 (15)	C13'-O2-C11-C10	-8.6 (9)
C1—Sn1—O3—Sn2 ⁱ	86.70 (15)	C13—O2—C11—C12	-165.5 (7)
O1—Sn1—O3—Sn2 ⁱ	177.83 (9)	C13'—O2—C11—C12	174.7 (6)
$O1^{i}$ —Sn1—O3—Sn2 ⁱ	-2.17 (9)	Sn1—O1—C12—C7	10.6 (7)
$N1^{i}$ — $Sn1$ — $O3$ — $Sn2^{i}$	-3.97 (19)	Sn2—O1—C12—C7	166.8 (3)

N1—Sn1—O3—Sn2 ⁱ	176.03 (19)	Sn1—O1—C12—C11	-168.7 (3)
C4—Sn3—O4—O4 ⁱ	-167 (8)	Sn2—O1—C12—C11	-12.5 (6)
C4 ⁱ —Sn3—O4—O4 ⁱ	13 (9)	C8—C7—C12—O1	-177.7 (4)
Cl1—Sn3—O4—O4 ⁱ	103 (8)	C6—C7—C12—O1	8.1 (7)
Cl1 ⁱ —Sn3—O4—O4 ⁱ	-77 (8)	C8—C7—C12—C11	1.6 (7)
O4 ⁱ —Sn3—O4—Sn2	-97 (9)	C6—C7—C12—C11	-172.6 (5)
C4—Sn3—O4—Sn2	95.4 (12)	C10-C11-C12-O1	178.7 (5)
C4 ⁱ —Sn3—O4—Sn2	-83.7 (12)	O2—C11—C12—O1	-4.6 (7)
Cl1—Sn3—O4—Sn2	5.4 (11)	C10-C11-C12-C7	-0.7 (7)
Cl1 ⁱ —Sn3—O4—Sn2	-174.0 (11)	O2—C11—C12—C7	176.0 (4)
$O4^{i}$ —Sn3—O4—Sn2 ⁱ	65 (8)	C11—O2—C13—C14	-96.5 (12)
C4—Sn3—O4—Sn2 ⁱ	-102.3 (10)	C13'-O2-C13-C14	-4(3)
C4 ⁱ —Sn3—O4—Sn2 ⁱ	78.6 (13)	C11—O2—C13'—C14'	-71.7 (14)
Cl1—Sn3—O4—Sn2 ⁱ	167.7 (11)	C13—O2—C13'—C14'	-169 (5)
Cl1 ⁱ —Sn3—O4—Sn2 ⁱ	-11.7 (11)		
Symmetry codes: (i) y , x , $-z$.			

Fig. 1